

Modelica Model Debugging

Martin Sjölund <martin.sjolund@liu.se>
Linköping University, Sweden

OpenModelica Workshop
February 2013, Linköping, Sweden

mailto:martin.sjolund@liu.se

Modelica

 No explicit control flow
 Optimization
 Symbolic manipulations
 Numerical methods and solvers
 Linear/Non-linear blocks
 Events

Modelica Debugging

 Need knowledge
 Modelica
 The tool
 Numerical methods

Typical Error Message

Error solving nonlinear system 132

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

Better Error Message

Error solving nonlinear system 132 <more info>

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

Origin

 Several Levels
 (Graphical Representation)
 Source Code
 Flat Equation-System
 Optimized Equation-System
 Translated Code (typically C)

 It should always be possible to go backwards
 Simple for flattened equation system to source
 Harder for optimized code

Symbolic Transformations

 From source code to flat equations
 Most of the structure remains
 Few symbolic manipulations (mostly

simplification/evaluation)

 Equation System Optimization
 Changes structure
 Strong connected components
 Variable replacements
 … and more

Tracing Transformations

 Simple Idea
 Store transformations as equation metadata
 Works best for operations on single equations

 Each kind of transformation is different
 Alias Elimination (a = b)
 Gaussian Elimination (linear systems, several

equations)

 Equation solving (f
1
(a,b) = f

2
(a,b), solve for a)

 ...

Alias Elimination

 boxBody1.body.w_a[3] = revolute1.w

 Can remove one variable and replace it
with the other

Operations

 Simplify

 Substitution

 Alias elimination

 Known variables

 Inline

 Scalarization

 Differentiation

 Solve w.r.t.

 Solve linear system symbolically

 New dummy derivative added

 Residual form

Debugging Using the Trace

 General Purpose
 Verify performance and correctness of the trace
 Navigate equations

 Cross-referencing
 Go to parents
 View trajectories

 Special-Purpose
 Non-linear system debugger

Trace Example

Demo

+simCodeTarget=Dump

Future Work

 Graphical debugger
 General-purpose
 Domain-specific

 Cross-references, parent blocks

 Runtime support to launch debugger

 Tracing in algorithmic code

 More operations recorded
 Control flow and events
 Forgotten optimization modules

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

